Name: \qquad

Acids/Bases and Chemical Equilibrium
Pride Remediation Session Solutions

Acids, Bases \& Conjugates

Identify the following compounds as acids, bases, conjugate acid or conjugate base

$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{NH}_{2}{ }^{-} \Rightarrow \mathrm{CH}_{3} \mathrm{O}^{-}+\mathrm{NH}_{3}$
Acid Base CB CA
$\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$
Acid Base CA CB

LeChatelier's Principle

Use arrows to indicate how the indicated changes will effect the concentration of the following substances:

$$
\mathrm{NH}_{3} \rightleftarrows \mathrm{~N}_{2}+3 \mathrm{H}_{2}+\text { heat }
$$

Change: increase [N_{2}]
$\left[\mathrm{NH}_{3}\right] \Uparrow$
$\left[\mathrm{H}_{2}\right] \Downarrow$
temperature \Downarrow

$$
\mathrm{N}_{2}+\mathrm{O}_{2}+\text { heat } \rightleftarrows 2 \mathrm{NO}
$$

Change: increase [O_{2}]
$\left[\mathrm{N}_{2}\right] \Downarrow$
[NO] \uparrow
temperature \Downarrow

$$
2 \mathrm{SO}_{3}+\text { heat } \rightleftarrows 2 \mathrm{SO}_{2}+\mathrm{O}_{2}
$$

Change: decrease [SO_{2}]
$\left[\mathrm{SO}_{3}\right] \Downarrow$
$\left[\mathrm{O}_{2}\right] \Uparrow$
temperature \Downarrow

Reaction Rates and Collision Theory

Indicate if the following changes will increase or decrease the rate of the reaction and then explain why based on the collision theory of reaction rates. Use the terms frequency and magnitude of collisions.

Repeat an acid/base reaction with 2 M HCl , rather than 1 M HCl
Increasing the concentration will increase the rate of the reaction because the reactants will collide more frequently.

Decrease temperature

Decreasing temperature will decrease the rate of the reaction because the reactants will collide with less energy (magnitude) and less frequently.

Grind a crystalline reactant into a powder

Increasing the surface area of the reactant will increase the reaction rate because the reactants will collide more frequently.

Add water, making the reactants less concentrated
Decreasing the concentration will decrease the rate of the reaction because the reactants will collide less frequently.

Chemical Equilibrium

Below is the Haber Process, which has a Kc value of 9.60.

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftrightharpoons 2 \mathrm{NH}_{3}
$$

Write the K_{c} expression for the reaction

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}
$$

At equilibrium, it reachers the following concentrations: $0.025 \mathrm{M} \mathrm{N} \mathrm{N}_{2}$ and $0.050 \mathrm{M} \mathrm{H}_{2}$. Calculate the molarity of NH_{3}.

$$
\begin{aligned}
& 9.60=\frac{[\mathrm{X}]^{2}}{[0.025 \mathrm{M}][0.050 \mathrm{M}]^{3}} \\
& x=0.0055 \mathrm{M}
\end{aligned}
$$

At equilibrium, does this reaction favor reactants or products? Explain your reasoning
At equilibrium, this reaction favors products. This conclusion is based on a K_{c} value greater than 1 .

