Name:			

Acids/Bases and Chemical Equilibrium Flex Remediation Session Assignment

Acids, Bases & Conjugates

Identify the following compounds as acids, bases, conjugate acid or conjugate base

LeChatelier's Principle

temperature _____

Use arrows to indicate how the indicated changes will effect the concentration of the following substances:

$$NH_3 \rightleftharpoons N_2 + 3H_2 + heat$$

Change: increase [N ₂]
[NH ₃]
[H ₂]
temperature
$N + O + h_{out} \rightarrow 2NO$
$N_2 + O_2 + heat \rightleftharpoons 2NO$
Change: increase [O ₂]
$[N_2]$
[NO]
temperature
$2SO_3 + heat \rightleftharpoons 2SO_2 + O_2$
Change: decrease [SO ₂]
[SO ₃]
$[O_2]$

Reaction Rates and Collision Theory

Repeat an acid/base reaction with 2M HCl, rather than 1M HCl

Indicate if the following changes will increase or decrease the rate of the reaction and then explain why based on the collision theory of reaction rates. Use the terms frequency and magnitude of collisions.

Decrease temperature
Grind a crystalline reactant into a powder
Add water, making the reactants less concentrated
Chemical Equilibrium Below is the Haber Process, which has a Kc value of 9.60.
$N_2 + 3H_2 \Longrightarrow 2NH_3$
Write the K_c expression for the reaction
At equilibrium, it reachers the following concentrations: $0.025M\ N_2$ and $0.050M\ H_2$. Calculate the molarity of NH_3 .
At equilibrium, does this reaction favor reactants or products? Explain your reasoning
Please excuse during PRIDE on Thursday May 16th to attend a remediation session for chemistry. Zlow 3rffm Call

Teachers' Signatures