Name: \qquad

1. List four characteristic properties of acids and four characteristic properties of bases.

Acids	Bases
Tart or sour taste	Bitter Taste
Form electrolytic solutions (conduct electricity)	Form electrolytic solutions (conduct electricity)
React with metals to form hydrogen gas	Feel slippery (soapy)
Cause acid-base indicators to change color	Cause acid-base indicators to change color

2. Fill in the chart below by providing simple definitions.

	Acid	Base
Arrhenius's Definition	H^{+}Producer	OH^{-}producer
Brønsted-Lowry Definitions	Proton Donor	Proton Acceptor

3. a. Write the correct symbol for the hydrogen ion:
H^{+}
b. Write the correct symbol for a hydronium ion:
$\mathrm{H}_{3} \mathrm{O}^{+}$
4. Define the term amphoteric.

Amphoteric refers to a substance which can function as an acid or a base, depending on the specific environment.
5. Write balanced equations for the:
a. Dissociation of calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$

$$
\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}
$$

b. Ionization of nitric acid, HNO_{3}

$$
\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}
$$

6. Write the equation for the ionization of nitric acid, HNO_{3}, showing the formation of the hydronium ion.

$$
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-}
$$

7. Identify the hydrogen-ion donor \& acceptor (present on the reactant side of each equation) in each of the following reactions:
a. $\mathrm{HNO}_{3}(l)+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{3}{ }^{-}(a q)$
b. $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}(I)+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}(a q)+\mathrm{OH}^{-}(a q)$
c. $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(I)+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$

\mathbf{H}^{+}donor (the acid)	\mathbf{H}^{+}acceptor (the base)
HNO_{3}	$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O} \mathrm{NH}_{2}$	

8. For each acid listed in question 7, identify it's conjugate base.

	Acid (Reactant side of equation)	Conjugate Base
a.	HNO_{3}	$\mathrm{NO}_{3}{ }^{-}$
b.	$\mathrm{H}_{2} \mathrm{O}$	OH^{-}
c.	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$

9. Write the formulas for the conjugate base of each of the following acids.
a. $\mathrm{H}_{2} \mathrm{SO}_{3}$
b. $\mathrm{HCO}_{3}{ }^{-}$
c. NH_{4}^{+}
$\mathrm{HSO}_{3}{ }^{-}$or $\mathrm{SO}_{3}{ }^{2-}$ \qquad
\qquad
10. Write the formulas for the conjugate acid of each of the following bases.
a. $\mathrm{H}_{2} \mathrm{O}$
\qquad
b. $\mathrm{CO}_{3}{ }^{2-}$
c. PH_{3}
\qquad
PH_{4}^{+}
11. For each of the following reactions, identify the Brønsted-Lowry acid and Brønsted-Lowry base on the reactant side of the equation, and the conjugate acid and conjugate base on the product side.

12. Consider the following two reactions. In which reaction does $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$act as a base? In which does it act as an acid?

Is $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$an acid or base?
a. $\quad \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{OH}^{-}(a q)$
b. $\quad \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$

$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$a base
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$an acid

13. Calculate the pH 's of strong acid solutions with the following H^{+}concentrations. Show your work.
a. 1.0 M
b. $1.0 \times 10^{-5} \mathrm{M}$
c. $1.5 \times 10^{-5} \mathrm{M}$
d. $2.0 \times 10^{-5} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pH}=-\log [1.0]$
$\mathrm{pH}=0.0$
e. $3.00 \times 10^{-12} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pH}=-\log \left[3.00 \times 10^{-12}\right]$
$\mathrm{pH}=-\log \left[1.0 \times 10^{-5}\right]$
$\mathrm{pH}=5.0$
$\mathrm{pH}=-\log \left[1.5 \times 10^{-5}\right]$
$\mathrm{pH}=-\log \left[2.0 \times 10^{-5}\right]$
$\mathrm{pH}=4.8$
$\mathrm{pH}=4.7$
f. $1.125 \times 10^{-15} \mathrm{M}$
g. 12.0 M
h. $0.875 \times 10^{-10} \mathrm{M}$
$\mathrm{pH}=11.5$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pH}=-\log \left[1.125 \times 10^{-15}\right]$
$\mathrm{pH}=-\log [12.0]$
$\mathrm{pH}=-\log \left[0.875 \times 10^{-10}\right]$
$\mathrm{pH}=14.95$
$\mathrm{pH}=-1.08$
$\mathrm{pH}=10.1$
14. Calculate the $\mathrm{H}_{3} \mathrm{O}^{+}$concentrations for solutions with the following pH 's. Show your work.
a. 2.00
b. 2.25
c. 2.5
d. 3.0
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-2.00}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-2.25}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-2.5}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-3.0}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.00 \times 10^{-2} \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.62 \times 10^{-3} \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.2 \times 10^{-3} \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-3} \mathrm{M}$
e. 7
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-7}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-7} \mathrm{M}$
f. 9.50
g. 12.15
h. 14.0
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-9.50}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.16 \times 10^{-10} \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}+10^{-12.15}\right.$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-7}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.079 \times 10^{-13} \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.00 \times 10^{-14} \mathrm{M}$
