Name: \qquad

Percent Yield Lab

I. Purpose: During this lab, you will carry out an acid/base reaction; the base being your limiting reactant, with acid in excess. By collecting the ionic solid product, a percent yield will be calculated.
II. Procedure:

1) Clean (with water) and dry an evaporating dish \& a watch glass
2) Weigh the dish and the watch glass
3) Add approximately 1.0 grams NaHCO_{3} to the dish
4) Reweigh the dish/watch glass with the NaHCO_{3}
5) React, while stirring, the base with excess 1 M HCl until complete
6) Isolate the NaCl by evaporating the water, with the watch glass over dish
7) After cool, reweigh evaporating dish/watch glass with product
8) Rinse dish and watch glass, clean up lab area, return watch glass
III. Data

Mass Dish/Glass	27.25 g
Mass Dish/Glass $+\mathrm{NaHCO}_{3}$	28.47 g
Mass Dish/Glass + Product	27.98 g

V. Calculations
A) Write the balanced equation for the acid/base reaction performed.

$$
\mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

B) Calculate the mass of NaHCO_{3} you began with in the reaction.

Mass of Dish, Glass, NaHCO_{3}
-Mass of Dish, Glass

mass NaHCO_{3}
28.47 g
-27.25g
1.22 g
V. Calculations
C) Do all the calculations necessary to determine the percent yield for this reaction Actual yield:
Mass of Dish, Glass, $\mathbf{N a C l}$ 27.98g
-Mass of Dish, Glass mass NaCl
0.73g

$1.22 \mathrm{~g} \mathrm{NaHCO}_{3}$	$1 \mathrm{~mol} \mathrm{NaHCO}_{3}$	1 mol NaCl	58.5 g NaCl
	$84.0 \mathrm{~g} \mathrm{NaHCO}_{3}$	$1 \mathrm{~mol} \mathrm{NaHCO}_{3}$	1 mol NaCl

Percent yield:

$$
\% \text { Yield }=\frac{\text { Actual }}{\text { Theoretical }} \times 100=\frac{0.73 \mathrm{~g}}{0.850 \mathrm{~g}} \times 100=86 \%
$$

VI. Conclusions

Discuss the possible reasons your percent yield was not 100%.
\qquad
\qquad
\qquad

In the purpose, the base was identified as the limiting reactant and the acid as being in excess. Explain what this means.
\qquad
\qquad
\qquad
\qquad

In general, why is it impossible to have higher than 100% yield? How can yields over 100% be explained?

