Percent Yield \& Limiting Reactant

Percent Yield \& Limiting Reactant
Our Goals for the Day

Reactants \Rightarrow Products

- 2 Questions to Answer...
- How much product should a reaction create?
- At what point will a reaction end?

Percent Yield \& Limiting Reactant

Percent Yield

- Percentage Yield
- A ratio comparing the actual amount of product to the amount that should be produced

$\%$ Yield $=\frac{\text { Actual Yield }}{\text { Theol }} \times 100$ Theoretical Yield

- Actual = from experimentation
- Theoretical = predicted by mass/mass problem

3

Percent Yield \& Limiting Reactant

Percent Yield

- Steps:
- 1. Write a balanced equation
- 2. Start with a reactant mass
- 3. Set goal at mass of known product
- 4. Solve mass-mass problem
- 5. Use result of mass-mass problem as theoretical yield in \% yield equation

Percent Yield \& Limiting Reactant

Percent Yield

- When 15.5 grams of CH_{4} is combusted with excess oxygen, 32.1 grams of water is collected. What is the percent yield?

$$
\underset{15.5 \mathrm{~g} \mathrm{CH}_{4}}{\mathrm{CH}_{4}}+2 \mathrm{O}_{2} \Longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{32.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}^{2 \mathrm{O}}
$$

	$1 \mathrm{~mol} \mathrm{CH}_{4}$	$\underline{1} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	$18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
	$16.0 \mathrm{~g} \mathrm{CH}_{4}$	$\underline{1} \mathrm{~mol} \mathrm{CH}_{4}$	$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

$\%$ Yield $=\frac{\text { actual }}{\text { theor }} \times 100=\square \times 100=92.0 \%$

Percent Yield \& Limiting Reactant

Limiting Reactant

- Limiting Reactant
- A limiting reactant is the reactant that is completely consumed in a chemical reaction
- It limits the extent to which the reaction proceeds

7

Percent Yield \& Limiting Reactant

Limiting Reactant

- Limiting Reactant
- Steps:
- 1. Balanced Equation
- 2. Convert mass to moles (account for mass)
- 3. Divide by coefficients (account for ratio)
- 4. Smallest is limiting

Percent Yield \& Limiting Reactant

Limiting Reactant

- 25.0 grams HCl reacts with 25.0 grams of zinc to form zinc chloride and hydrogen gas. Which is the limiting reactant?

$$
2 \mathrm{HCl}+\mathrm{Zn} \Rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

| 25.0 g HCl | 1 mol HCl |
| :--- | :--- |$=0.685 \mathrm{~mol} \mathrm{HCl} \div 2=0.343 \mathrm{~mol} \mathrm{HCl}$

HCl is the Limiting Reactant

25.0 g Zn	1 mol Zn
	65.4 g Zn

