Stoichiometry

Moles
 Conversions

Balancing Equations

Stoichiometry

The mathematical study of the quantitative relationships that exist in chemical reactions

Stoichiometry

Introduction

- Stoichiometric ratios
- The molar ratio of one reactant/product to another reactant/product

$$
\begin{aligned}
& \mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} \\
& 2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Stoichiometry

Steps for Problem Solving

- Mass-Mass problems
- A stoichiometric process that allows us to predict how much reactant (or product) will be consumed (or created) in a chemical reaction.
- Steps:
- 1. Write a balanced equation
- 2. Convert mass to moles
- 3. Apply the stoichiometric ratio from the balanced equation
- 4. Convert moles to grams

Stoichiometry					
Sample \#1					
- How much water will be produced when 12.5 grams of methane $\left(\mathrm{CH}_{4}\right)$ are consumed in a combustion reaction?					
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \Rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$					
$16.0 \mathrm{~g} \mathrm{CH}_{4}\left\|\underline{1} \mathrm{~mol} \mathrm{CH}_{4}\right\| 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$					
$28.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$					
5					
Stoichiometry					
Sample \#2					
- How much copper II nitrate will be consumed when 10.2 grams of sodium chloride is reacted with it.$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NaCl}^{+1} \Rightarrow \mathrm{CuCl}_{2}+2 \mathrm{NaNO}_{3}$					
10.2 g NaCl 1 mol NaCl $1 \mathrm{~mol} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ $187.5 \mathrm{~g} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ 正 $=\mathrm{g} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$					
58.5 NaCl $\underline{2} \mathrm{~mol} \mathrm{NaCl}$ $1 \mathrm{~mol} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$					
$16.3 \mathrm{~g} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$					

