Lab Skills, Techniques, Concepts & Calculations

Skills

Lab Procedures & % Error Lighting a Bunsen Burner 1. "Shutdown" the burner 2. Turn on the gas 3. Open the needle valve

- 4. Light the burner
- 5. Adjust the flame
 - 1. Valve = height
 - 2. Barrel = heat
- 6. Shut of burner at the tap

Lab Procedures & % Error

Using a Balance

- Never put chemicals directly on the balance use a weighing boat
- Use the <u>tare button</u> to <u>rezero</u> the balance or remove the mass of a container
- **Don't** estimate 1 digit past the scale of the device because it is a digital read-out and doesn't allow estimation

Lab Procedures & % Error

Reading a Graduated Cylinder

- Meniscus concave-up surface on a liquid in a cylinder
- Parallax error in measurement caused by misalignment
- <u>**Do**</u> estimate 1 decimal place past the scale of the device

	Lab Procedures & % Error
Filterin	g
1.	Fold in half
2.	Repeat
3.	Open pleats "1 and 3"
4.	Clip the corner of the outer pleat
5.	Put in funnel and wet
6.	Don't pour over the filter paper

Techniques

Lab Procedures & % Error

Dispensing Liquids

Pouring

- 1. Remove the lid palm it!
- 2. Dispense the liquid never pour back into stock bottle
- 3. Return the lid to the bottle *without* setting it on the counter
- 4. Always use a graduated cylinder

Transferring

- 1. Use the attached pipet
- 2. Squeeze the pipet to bring up the liquid into the bulb
- 3. Dispense liquid back into stock bottle down to the desired amount
- 4. Squeeze the pipet again to transfer the liquid
- 5. Return the pipet to its assigned bottle

Lab Procedures & % Error

Dispensing and Weighing Solids

- Always important to avoid contamination
- Never put chemical directly on the balance use a weighing boat
- Use the "tap method" to dispense solid
- Never pour back into stock containers use your spoon and dispose of extras

Concepts and Calculations

	Lab Procedures & % Error
	Finding Mass by Difference
	 When we learned to use a balance, we learned that our masses may be incorrect due to errors in the balance How can we overcome this issue and be certain that our masses are accurate? Find <i>Mass by Difference</i> (just like question 3 on the back of the homework we just graded today
	Mass of Beaker:
	Mass of Beaker & Salt:
L	

• A chemist reacts Na and Cl together in a closed pyrex container. He expects to produce 17.20 grams of product. If he only collect 13.85 grams, what is the percent error? % Error = $\frac{ \text{measured} - \text{accepted} }{\text{accepted}} \times 100$ accepted % Error = $\frac{ 13.85g - 17.20g }{17.20g} \times 100$ % Error = $\frac{ -3.35g }{17.20g} \times 100$ % Error = 19.5%
% Error = $ \underline{\text{measured - accepted}} \times 100$ accepted % Error = $\frac{ 13.85g - 17.20g }{17.20g} \times 100$ % Error = $\frac{ -3.35g }{17.20g} \times 100$ % Error = 19.5%
% Error = $\frac{ 13.85g - 17.20g }{ 7.20g} \times 100$ % Error = $\frac{ -3.35g }{ 7.20g} \times 100$ % Error = 19.5%
% Error = $\frac{ -3.35g }{17.20g} \times 100$ % Error = 19.5%
% Error = 19.5%