Electromagnetics & Waves

 Relating Frequency and Wavelength The product of the frequency and wavelength of a wave will always equal its speed speed = λν speed = (m) (1/s) = m/s c = λν The yellow light given off by a sodium vapor lamp used for public lighting has a wavelength of 589 nm. What is the frequency of the radiation? 	Electromagnetics & Waves
 The product of the frequency and wavelength of a wave will always equal its speed speed = λν speed = (m) (1/s) = m/s c = λν The yellow light given off by a sodium vapor lamp used for public lighting has a wavelength of 589 nm. What is the frequency of the radiation? 	Relating Frequency and Wavelength
 C = XV The yellow light given off by a sodium vapor lamp used for public lighting has a wavelength of 589 nm. What is the frequency of the radiation? 	 The product of the frequency and wavelength of a wave will always equal its speed speed = λν speed = (m) (1/s) = m/s a = λν
	 C = XV The yellow light given off by a sodium vapor lamp used for public lighting has a wavelength of 589 nm. What is the frequency of the radiation?

Electromagnetics & Waves

Quantized Energy

- Energy can only be released (or absorbed) by atoms in "chunks" of some minimum size Max Planck
- These chunks are termed quantum
 - Fixed amount
 - Photons
- The energy of a single photon is dependent on frequency
- E = hv
 - E = energy
 - h = Planck's constant
 - 6.63 x 10⁻³⁴ J-s (joule-seconds)
- Matter can only absorb or emit energy in multiples of hv

Electromagnetics & Waves Quantized Energy and Photons • Calculate the smallest increment of energy, that is, the quantum of energy, that an object can absorb from yellow light whose wavelength is 589 nm.

