

The Mole

• 3.4 Mass, Mole, Particle conversions....

Stoichiometry	
Empirical Formulas	
Empirical	
Based on experimentation	
• Empirical formulas tell us the relative number of atoms of each element in a compound	
• Steps in calculating	
• Assume a 100 g sample	
Convert grams to moles	
• Find the whole number ratio by dividing by the smallest value	
• Ethylene glycol is composed of 38.7% carbon, 9.7% hydrogen and 51.6% oxygen. What is its empirical formula?	

Molecular Formula

- A molecular formula represents a compound as it actually exists
- Molecular formulas can be found from empirical formulas
 - Must know the molecular weight of the compound
 - Steps:
 - Calculate the empirical mass
 - Divide the molecular mass by the empirical mass
 - Apply this "multiplier" to the empirical formula

Stoichiometry Molecular Formula • What is the molecular formula of ethylene glycol, if its molecular mass is 62.1 g/mol?

Specific Stoichiometry Calculations

- 3.6 Quantitative Information
- Mass-Mass Problems
- 3.7 Limiting Reactants
- The reactant which is consumed first in a chemical reaction
- Steps:
 - Convert mass to moles
 - Divide by coefficients
 - Smallest number is limiting
- Theoretical Yield
 - The maximum amount of a product allowed, given the limiting reactant

Stoichiometry Summary • 2 C₆H₁₂ + 5O₂ ==> 2 H₂C₆H₈O₄ + 2 H₂O • Assume you use 25.0 grams of cyclohexane and 25.0 grams of oxygen • What is the limiting reactant? • What is the theoretical yield for adipic acid? • If you receive 33.5 grams of the acid, what is the percent yield?

Stoichiometry	
Homework	
• 3, 5, 7, 16, 21, 27, 39, 47a, 51, 59, 63, 81	
• Outline Chapter 4 - due in 2 class periods	
 Summarize Table 4.1 (p.125) in a way that easily summarizes the significant trends in solubility 	